Российские ученые сделали шаг к созданию гибридных квантовых компьютеров

Коллектив ученых из НИТУ «МИСиС» и МФТИ разработал платформу для осуществления фотон-магнонного взаимодействия на одном чипе и экспериментально подтвердил эффективность ее работы. Разработка российских ученых может стать шагом к созданию гибридных квантовых устройств, которые сегодня считаются наиболее перспективным способом передачи квантовой информации. Исследование было опубликовано в журнале Physical Review Applied.

На сегодняшний день существует множество вариантов квантовых устройств: твердотельные сверхпроводящие, оптические на фотонах, с атомными ловушками и др. Каждый из них имеет свои недостатки и преимущества. Одним из наиболее перспективных направлений развития квантовой вычислительной техники считается создание гибридных устройств, в которых элементы каждого типа будут отвечать за определенную функцию.

«Например, на сверхпроводящих кубитах можно производить вычисления, но передавать данные все же удобнее по оптоволоконной связи, то есть с помощью фотонов. Поэтому необходимо сделать так, чтобы произошла конверсия микроволнового излучения в фотоны. Потом информация приходит на устройство, работающее по третьему принципу, и она должна снова конвертироваться и уже жить на этом устройстве», — поясняет руководитель исследования Игорь Головчанский, руководитель лаборатории криоэлектронных систем НИТУ «МИСиС», старший научный сотрудник лаборатории топологических квантовых явлений в сверхпроводящих системах МФТИ.

В последнее десятилетие в центре внимания исследователей и разработчиков оказались гибридные системы на основе коллективных спиновых возбуждений, или магнонов. Одно из наиболее заметных преимуществ магнонных устройств заключается в том, что магнонные системы достаточно легко перестраиваются магнитным полем. При этом магнонные системы по размеру существенно меньше фотонных, что значительно затрудняет разработку гибридных устройств. И это один из самых больших вызовов для ученых.

Российским ученым удалось создать систему, в которой реализовано сверхсильное фотон-магнонное взаимодействие, и экспериментально подтвердить силу этого взаимодействия. Так, сила фотон-магнонной связи в разработанной системе составила порядка 350 Гц. Для сравнения, ранее максимальный показатель для таких систем составлял около 100 Гц, а еще несколько лет назад этот показатель не превышал 1 Гц.

«Система состоит из двух сверхпроводящих пленок, разделенных диэлектриком. В таких системах радикально меняется фазовая скорость, то есть фотон становится гораздо медленнее, что для данной системы критически важно, поскольку именно замедление фотонной фазовой скорости гарантирует прочность фотон-магнонной связи. Затем внутрь этого „сэндвича“ сверхпроводник-изолятор-сверхпроводник мы встраиваем еще ферромагнитную пленку, и получается, что электромагнитные волны, которые живут в этой трехслойной конструкции, начинают взаимодействовать с ферромагнетиками. Ферромагнетики тоже начинают влиять на систему, и происходит гибридизация», — объясняет Игорь Головчанский.

При этом сверхсильная фотон-магнонная связь в созданной российскими учеными системе подтверждает присутствие в ней гибридных квазичастиц, которые ранее в подобных системах не наблюдались, а именно частицы плазмон-магнон-поляритонова, плазмонная состаляющая которых защищает систему от так называемого сверхизлучающего перехода.

«В нашей системе мы обнаружили, что так называемые Куперовские пары (связанное состояние двух взаимодействующих через фонон электронов), вносят определенный вклад в энергию системы, и меняют законы дисперсии этой системы, то есть резонансные частоты и т.п. Это важно, потому что все строится вокруг так называемой модели Дике, в которой рассматривается ансамбль частичек, которые могут взаимодействовать с электромагнитным полем, и в принципе, если бы не было этого слагаемого, наша система могла бы перейти сверхизлучательное состояние. Мы показали, что в наших системах сверхизлучательного перехода быть не может», — подчеркивает Головчанский.

Разработанная российскими учеными платформа для фотон-магнонного взаимодействия может не только стать основой для гибридных квантовых вычислительных устройств, но позволит продвинуться в дальнейшем изучении таких тонких физических явлений как, например, обменные спиновые волны. При этом ее существенным преимуществом является возможность создания сверхсильной фотон-магнонной связи на одном чипе.

Директор Института биомедицинской инженерии Фёдор Сенатов на визионерской сессии «Прекрасное не далеко. Квантовый мир завтрашнего дня»Директор Института биомедицинской инженерии Фёдор Сенатов на визионерской сессии «Прекрасное не далеко. Квантовый мир завтрашнего дня»