Ученые лаборатории «Неорганические наноматериалы» НИТУ «МИСиС» в составе международного исследовательского коллектива доказали возможность изменения структурных и проводящих свойств нанотрубок путём их растяжения. Это потенциально может позволить расширить области их применения в электронике и высокоточной сенсорике, например, микропроцессорах и высокоточных датчиках. Статья о проведенном исследовании опубликована в журнале Ultramicroscopy.
Углеродная нанотрубка может быть представлена в виде свёрнутого особым образом листа графена. Существуют различные способы «сворачивания», благодаря которым края графена соединяются между собой под разными углами, образуя в итоге кресельные, зигзагообразные или хиральные нанотрубки (рис. 1).
Нанотрубки, обладая высокой электропроводностью, считаются перспективным материалом для использования в электронике и сенсорике, например, в микропроцессорах и высокоточных датчиках. Однако на этапе производства углеродных нанотрубок очень трудно контролировать их проводимость. В одном массиве могут вырасти нанотрубки и с металлическими, и с полупроводниковыми свойствами, при этом, например, микропроцессорная электроника требует только полупроводниковых нанотрубок, имеющих одинаковые характеристики.
Ученые лаборатории «Неорганические наноматериалы» НИТУ «МИСиС» вместе с научным коллективом из Японии, Китая и Австралии, возглавляемым профессором Дмитрием Гольбергом, предложили способ, позволяющий модифицировать структуру уже готовых нанотрубок и изменять таким образом их проводящие свойства.
«Основа нанотрубки — свёрнутый слой графена — представляет собой сетку из правильных шестиугольников, в вершинах которых расположены атомы углерода. Если одну из углеродных связей в нанотрубке повернуть на 90°, вместо шестиугольников на этом месте сформируются пятиугольник и семиугольник, и получится так называемый дефект Стоуна-Уэйлса. Такой дефект может возникнуть в структуре, при определённых условиях, — рассказывает Павел Сорокин, доктор физико-математических наук, доцент, научный руководитель инфраструктурного проекта „Теоретическое материаловедение наноструктур“ лаборатории „Неорганические наноматериалы“ НИТУ „МИСиС“. — Еще в конце
90-х было предсказано, что миграция этого дефекта по стенкам сильно нагретой нанотрубки при приложении к ней механического напряжения может привести к изменению её структуры — последовательной смене хиральности нанотрубки, что ведёт к изменению её электронных свойств. Ранее не было получено экспериментальных подтверждений этой гипотезы. В данной работе представлено её убедительное доказательство».
Ученые лаборатории «Неорганические наноматериалы» провели моделирование эксперимента на атомном уровне. Сначала нанотрубки удлинялись до образования первого структурного дефекта, состоящего из двух пятиугольников и двух семиугольников (дефект Стоуна-Уэйлса, см. рис.2а), который, при продолжительном удлинении трубки начинал «расползаться» в стороны, перестраивая другие углеродные связи (рис.2b). Именно на этом этапе происходило изменение структуры нанотрубок. При дальнейшем удлинении начинали формироваться все новые и новые дефекты Стоуна-Уэйлса, приводя в конечном итоге, к изменению проводимости нанотрубок (рис.2).
«Мы со своей стороны отвечали за теоретическое моделирование процесса на суперкомпьютере в лаборатории „Моделирование и разработка новых материалов“, а зарубежные коллеги — за экспериментальную часть работы. Мы очень рады, что результаты моделирования хорошо совпали с экспериментальными данными», — дополняет соавтор работы, кандидат физико-математических наук Дмитрий Квашнин, научный сотрудник лаборатории «Неорганические наноматериалы» НИТУ «МИСиС».
Предложенная учеными технология способна помочь в преобразовании структуры «металлических» нанотрубок для их последующего применения в полупроводниковой электронике и сенсорике — например, для микропроцессоров и сверхчувствительных датчиков.
Рисунок 1 — различные типы нанотрубок: 1) зигзагообразные, 2) хиральные и 3) кресельные (или зубчатые).
Рисунок 2 — процесс смены структуры нанотрубки: а) растягивание с образованием первого дефекта; b) перестройка смежных углеродных связей; с) образование новых дефектов, продолжение перестройки связей.